Sunday, 5 November 2017

Promedio Medio Incondicional


Tengo un grupo de datos en el formato: Cada ID es un paciente y cada valor es, digamos, la presión arterial para ese minuto. Me gustaría crear una media móvil para los 60 minutos antes y 60 minutos después de cada punto. Sin embargo, como se puede ver, faltan minutos (por lo que no puedo usar números de fila) y me gustaría crear un promedio para cada ID único (por lo que el promedio de ID xxxx no puede incluir valores asignados a la ID aaaa). Suena como rollapply o rollingstat podría ser opciones, pero han tenido poco éxito tratando de reconstruir esto. Por favor, hágamelo saber si se necesita mayor claridad. AIM: Comparar, contrastar y calcular enfoques paramétricos y no paramétricos para estimar la volatilidad condicional 8230 Incluyendo: ENFOQUE DE GARCH Incluyendo: LISO EXPONENCIAL (EWMA) ) Suavizado exponencial (paramétrico condicional) Los métodos modernos ponen más peso en la información reciente. Ambos EWMA y GARCH ponen más peso en la información reciente. Además, como EWMA es un caso especial de GARCH, tanto EWMA como GARCH emplean el suavizado exponencial. GARCH (p, q) y en particular GARCH (1, 1) GARCH (p, q) es un modelo heteroscedástico condesorregresivo general. Los aspectos clave son: Autoregresivo (AR). La variación de mañana 8217s (o volatilidad) es una función regresada de la variance8212s de today8217s regresa sobre sí mismo Condicional (C). La varianza de tomorrow8217s depende8212 es condicional on8212 la varianza más reciente. Una varianza incondicional no dependería de la variante Heteroskedastic de hoy en día (H). Las variaciones no son constantes, fluyen a lo largo del tiempo, GARCH retrocede en términos históricos o 8220lagged8221. Los términos rezagados son variantes o retornos cuadrados. El modelo genérico GARCH (p, q) regresa en (p) retornos cuadrados y (q) variaciones. Por lo tanto, GARCH (1, 1) 8220lags8221 o regresa en el último período 8217s cuadrado de retorno (es decir, sólo 1 retorno) y el último período 8217s varianza (es decir, sólo 1 varianza). GARCH (1, 1) dada por la siguiente ecuación. La misma fórmula de GARCH (1, 1) puede ser dada con parámetros griegos: Hull escribe la misma ecuación de GARCH como: El primer término (gVL) es importante porque VL es la varianza media de largo plazo. Por lo tanto, (gVL) es un producto: es la varianza media ponderada a largo plazo. El modelo GARCH (1, 1) resuelve la varianza condicional en función de tres variables (varianza anterior, retorno anterior2 y varianza de largo plazo): La persistencia es una característica incrustada en el modelo GARCH. Consejo: En las fórmulas anteriores, la persistencia es (b c) o (alfa-1 beta). Persistencia se refiere a la rapidez con que la varianza (o lentamente) vuelve a 8222decays8221 hacia su promedio a largo plazo. La alta persistencia equivale a la desintegración lenta y la disminución de la regresión hacia la media8221. La baja persistencia equivale a una rápida decaimiento y una rápida reversión a la media. 821 Una persistencia de 1,0 no implica una reversión media. Una persistencia de menos de 1.0 implica una reversión a la media, 8221 donde una menor persistencia implica una mayor reversión a la media. Sugerencia: Como anteriormente, la suma de los pesos asignados a la varianza retardada y retardo al cuadrado es la persistencia (persistencia bc). Una alta persistencia (mayor que cero pero menor que uno) implica una reversión lenta a la media. Pero si los pesos asignados a la varianza retardada y al retardo cuadrado retrasado son mayores que uno, el modelo es no estacionario. Si (bc) es mayor que 1 (si bc gt 1) el modelo es no estacionario y, según Hull, inestable. En cuyo caso, se prefiere EWMA. Linda Allen dice acerca de GARCH (1, 1): GARCH es a la vez 8220compact8221 (es decir, relativamente simple) y notablemente precisa. Los modelos de GARCH predominan en la investigación académica. Se han intentado muchas variaciones del modelo GARCH, pero pocas han mejorado en el original. El inconveniente del modelo GARCH es su no linealidad sic Por ejemplo: Resolver para la varianza de largo plazo en GARCH (1,1) Considere la siguiente ecuación GARCH (1, 1): Supongamos que: el parámetro alfa 0.2, el parámetro beta 0.7, Y Obsérvese que omega es 0.2 pero don8217t error omega (0.2) para la variación a largo plazo Omega es el producto de gamma y la variación a largo plazo. Por lo tanto, si alpha beta 0.9, entonces gamma debe ser 0.1. Dado que el omega es 0.2, sabemos que la varianza de largo plazo debe ser 2.0 (0.2 184 0.1 2.0). GARCH (1,1): Mera diferencia de notación entre Hull y Allen EWMA EWMA es un caso especial de GARCH (1,1) y GARCH (1,1) es un caso generalizado de EWMA. La diferencia más destacable es que GARCH incluye el término adicional para la reversión media y EWMA carece de una reversión media. Así es como obtenemos de GARCH (1,1) a EWMA: Entonces dejamos que 0 y (bc) 1, tal que la ecuación anterior se simplifique a: Esto es ahora equivalente a la fórmula para la media móvil exponencialmente ponderada (EWMA): En EWMA, el parámetro lambda ahora determina el 8220decay: 8221 un lambda que es cercano a uno (lambda alto) exhibe una decadencia lenta. RiskMetrics ™ Approach RiskMetrics es una forma de marca del enfoque de promedio móvil exponencialmente ponderado (EWMA): El lambda óptimo (teórico) varía según la clase de activo, pero el parámetro óptimo global utilizado por RiskMetrics ha sido 0,94. En la práctica, RiskMetrics sólo utiliza un factor de desintegración para todas las series: 183 0,94 para datos diarios 183 0,97 para datos mensuales (mes definido como 25 días de negociación) Técnicamente, los modelos diarios y mensuales son inconsistentes. Sin embargo, ambos son fáciles de usar, se aproximan bastante bien al comportamiento de los datos reales y son robustos a la falta de especificación. Nota: GARCH (1, 1), EWMA y RiskMetrics son paramétricos y recursivos. Resumen GARCH (1, 1) es RiskMetrics generalizado y, por el contrario, RiskMetrics es GARCH (1, 1) está dado por: Los tres parámetros son pesos y por lo tanto deben sumar a uno: Consejo: Tenga cuidado con el primer término en el Ecuación de GARCH (1, 1): omega () gamma () (variación media a largo plazo). Si se le pide la varianza, puede que tenga que dividir el peso para calcular la varianza promedio. Determine cuándo y si un modelo GARCH o EWMA debe usarse en la estimación de la volatilidad En la práctica, las tasas de varianza tienden a ser la media de reverberación por lo tanto, el modelo GARCH (1, 1) es teóricamente superior (8220 más atractivo que 8221) al modelo EWMA. Recuerde que es la gran diferencia: GARCH añade el parámetro que pesa el promedio de largo plazo y por lo tanto incorpora la reversión de la media. Consejo: Se prefiere GARCH (1, 1) a menos que el primer parámetro sea negativo (lo cual está implícito si alfa beta gt 1). En este caso, GARCH (1,1) es inestable y se prefiere EWMA. Explicar cómo las estimaciones GARCH pueden proporcionar pronósticos que son más precisos. El promedio móvil calcula la varianza basándose en una ventana de observación posterior, p. Los diez días anteriores, los 100 días anteriores. Hay dos problemas con el promedio móvil (MA): Característica de Ghosting: los shocks de volatilidad (aumentos repentinos) se incorporan abruptamente en la métrica MA y luego, cuando la ventana de seguimiento pasa, son abruptamente eliminados del cálculo. Debido a esto, la métrica MA cambiará en relación con la longitud de la ventana elegida. La información de tendencias no se incorpora. Las estimaciones de GARCH mejoran estas debilidades de dos maneras: A las observaciones más recientes se les asignan pesos mayores. Esto supera fantasmas porque un choque de volatilidad impactará inmediatamente en la estimación, pero su influencia se desvanecerá gradualmente a medida que pasa el tiempo. Se agrega un término para incorporar la reversión a la media Explique cómo la persistencia está relacionada con la reversión a la media. Dada la ecuación GARCH (1, 1): La persistencia es dada por: GARCH (1, 1) es inestable si la persistencia gt 1. Una persistencia de 1,0 indica que no hay reversión media. Una baja persistencia (por ejemplo, 0,6) indica una rápida decaimiento y una alta reversión a la media. Consejo: GARCH (1, 1) tiene tres pesos asignados a tres factores. La persistencia es la suma de los pesos asignados tanto a la varianza retardada como al retardo cuadrado rezagado. El otro peso se asigna a la varianza de largo plazo. Si la persistencia P y el peso G se asignan a la varianza de largo plazo, entonces PG 1. Por lo tanto, si P (persistencia) es alta, entonces G (reversión media) es baja: la serie persistente no es fuertemente revertida; media. Si P es bajo, entonces G debe ser alto: la serie impersistente significa fuertemente que reverte exhibe 8220 descomposición acelerada 8221 hacia la media. La varianza incondicional media en el modelo GARCH (1, 1) está dada por: Explique cómo EWMA descuentan sistemáticamente los datos más antiguos e identifican los factores de desintegración diaria y mensual de RiskMetrics174. La media móvil ponderada exponencialmente (EWMA) viene dada por: La fórmula anterior es una simplificación recursiva de la serie 8220true8221 EWMA que viene dada por: En la serie EWMA, cada peso asignado al cuadrado devuelve una relación constante del peso anterior. Específicamente, lambda (l) es la relación entre los pesos vecinos. De esta manera, los datos más antiguos se descartan sistemáticamente. El descuento sistemático puede ser gradual (lento) o abrupto, dependiendo de lambda. Si lambda es alta (por ejemplo, 0,99), entonces el descuento es muy gradual. Si lambda es baja (por ejemplo, 0,7), el descuento es más abrupto. Los factores de desintegración de RiskMetrics TM: 0.94 para datos diarios 0.97 para datos mensuales (mes definido como 25 días de negociación) Explique por qué las correlaciones de pronóstico pueden ser más importantes que las volatilidades de pronóstico. Al medir el riesgo de la cartera, las correlaciones pueden ser más importantes que la volatilidad / varianza individual del instrumento. Por lo tanto, en relación con el riesgo de la cartera, una previsión de correlación puede ser más importante que las previsiones de volatilidad individual. Utilizar GARCH (1, 1) para pronosticar la volatilidad La tasa de variación futura esperada, en (t) períodos hacia adelante, viene dada por: Por ejemplo, supongamos que una estimación de la volatilidad actual (período n) viene dada por GARCH (1, 1) ): En este ejemplo, alfa es el peso (0,1) asignado al cuadrado anterior (el retorno anterior era 4), beta es el peso (0,7) asignado a la varianza anterior (0,0016). ¿Cuál es la volatilidad futura esperada, en diez días (n 10) Primero, resuelva para la varianza de largo plazo. No es 0.00008 este término es el producto de la varianza y su peso. Dado que el peso debe ser 0,2 (1 - 0,1 -0,7), la variación de largo plazo 0,0004. Segundo, necesitamos la varianza actual (período n). Esto es lo que se nos da más arriba: Ahora podemos aplicar la fórmula para resolver la tasa de variación futura esperada: Esta es la tasa de varianza esperada, por lo que la volatilidad esperada es de aproximadamente 2.24. Observe cómo funciona esto: la volatilidad actual es de unos 3,69 y la volatilidad a largo plazo es 2. La proyección directa a 10 días 8220fades8221 la tasa actual más cercana a la tasa de largo plazo. Previsión de volatilidad no paramétrica Promedios de movimiento: ¿Cuáles son? Entre los indicadores técnicos más populares, los promedios móviles se utilizan para medir la dirección de la tendencia actual. Cada tipo de media móvil (comúnmente escrito en este tutorial como MA) es un resultado matemático que se calcula promediando un número de puntos de datos pasados. Una vez determinado, el promedio resultante se traza en un gráfico para permitir a los operadores ver los datos suavizados en lugar de centrarse en las fluctuaciones de precios cotidianas que son inherentes a todos los mercados financieros. La forma más simple de una media móvil, apropiadamente conocida como media móvil simple (SMA), se calcula tomando la media aritmética de un conjunto dado de valores. Por ejemplo, para calcular una media móvil básica de 10 días, sumaría los precios de cierre de los últimos 10 días y luego dividiría el resultado en 10. En la figura 1, la suma de los precios de los últimos 10 días (110) es Dividido por el número de días (10) para llegar al promedio de 10 días. Si un comerciante desea ver un promedio de 50 días en lugar, el mismo tipo de cálculo se haría, pero incluiría los precios en los últimos 50 días. El promedio resultante a continuación (11) tiene en cuenta los últimos 10 puntos de datos con el fin de dar a los comerciantes una idea de cómo un activo tiene un precio en relación con los últimos 10 días. Quizás usted se está preguntando porqué los comerciantes técnicos llaman a esta herramienta una media móvil y no apenas una media regular. La respuesta es que cuando los nuevos valores estén disponibles, los puntos de datos más antiguos deben ser eliminados del conjunto y los nuevos puntos de datos deben entrar para reemplazarlos. Por lo tanto, el conjunto de datos se mueve constantemente para tener en cuenta los nuevos datos a medida que estén disponibles. Este método de cálculo garantiza que sólo se contabilice la información actual. En la Figura 2, una vez que se agrega el nuevo valor de 5 al conjunto, el cuadro rojo (que representa los últimos 10 puntos de datos) se desplaza hacia la derecha y el último valor de 15 se deja caer del cálculo. Debido a que el valor relativamente pequeño de 5 reemplaza el valor alto de 15, se esperaría ver el promedio de la disminución de conjunto de datos, lo que hace, en este caso de 11 a 10. ¿Qué aspecto tienen los promedios móviles Una vez que los valores de la MA se han calculado, se representan en un gráfico y luego se conectan para crear una línea de media móvil. Estas líneas curvas son comunes en las cartas de los comerciantes técnicos, pero la forma en que se utilizan puede variar drásticamente (más sobre esto más adelante). Como se puede ver en la Figura 3, es posible agregar más de una media móvil a cualquier gráfico ajustando el número de períodos de tiempo utilizados en el cálculo. Estas líneas curvas pueden parecer distracción o confusión al principio, pero youll acostumbrarse a ellos a medida que pasa el tiempo. La línea roja es simplemente el precio medio en los últimos 50 días, mientras que la línea azul es el precio promedio en los últimos 100 días. Ahora que usted entiende lo que es un promedio móvil y lo que parece, bien introducir un tipo diferente de media móvil y examinar cómo se diferencia de la mencionada media móvil simple. La media móvil simple es muy popular entre los comerciantes, pero como todos los indicadores técnicos, tiene sus críticos. Muchas personas argumentan que la utilidad de la SMA es limitada porque cada punto en la serie de datos se pondera de la misma, independientemente de dónde se produce en la secuencia. Los críticos sostienen que los datos más recientes son más significativos que los datos anteriores y deberían tener una mayor influencia en el resultado final. En respuesta a esta crítica, los comerciantes comenzaron a dar más peso a los datos recientes, que desde entonces ha llevado a la invención de varios tipos de nuevos promedios, el más popular de los cuales es el promedio móvil exponencial (EMA). Promedio móvil exponencial El promedio móvil exponencial es un tipo de media móvil que da más peso a los precios recientes en un intento de hacerla más receptiva A nueva información. Aprender la ecuación algo complicada para calcular un EMA puede ser innecesario para muchos comerciantes, ya que casi todos los paquetes de gráficos hacen los cálculos para usted. Sin embargo, para los geeks de matemáticas que hay, aquí es la ecuación EMA: Cuando se utiliza la fórmula para calcular el primer punto de la EMA, puede observar que no hay ningún valor disponible para utilizar como la EMA anterior. Este pequeño problema se puede resolver iniciando el cálculo con una media móvil simple y continuando con la fórmula anterior desde allí. Le hemos proporcionado una hoja de cálculo de ejemplo que incluye ejemplos reales de cómo calcular una media móvil simple y una media móvil exponencial. La diferencia entre la EMA y la SMA Ahora que tiene una mejor comprensión de cómo se calculan la SMA y la EMA, echemos un vistazo a cómo estos promedios difieren. Al mirar el cálculo de la EMA, notará que se hace más hincapié en los puntos de datos recientes, lo que lo convierte en un tipo de promedio ponderado. En la Figura 5, el número de periodos de tiempo utilizados en cada promedio es idéntico (15), pero la EMA responde más rápidamente a los precios cambiantes. Observe cómo el EMA tiene un valor más alto cuando el precio está subiendo, y cae más rápidamente que el SMA cuando el precio está disminuyendo. Esta capacidad de respuesta es la razón principal por la que muchos comerciantes prefieren utilizar la EMA sobre la SMA. ¿Qué significan los diferentes días? Las medias móviles son un indicador totalmente personalizable, lo que significa que el usuario puede elegir libremente el tiempo que desee al crear el promedio. Los períodos de tiempo más comunes utilizados en las medias móviles son 15, 20, 30, 50, 100 y 200 días. Cuanto más corto sea el lapso de tiempo utilizado para crear el promedio, más sensible será a los cambios de precios. Cuanto más largo sea el lapso de tiempo, menos sensible o más suavizado será el promedio. No hay un marco de tiempo adecuado para usar al configurar sus promedios móviles. La mejor manera de averiguar cuál funciona mejor para usted es experimentar con una serie de diferentes períodos de tiempo hasta encontrar uno que se adapte a su estrategia. Medios móviles: cómo utilizarlos Suscríbete a las noticias para usar para obtener las últimas ideas y análisis Gracias por registrarte en Investopedia Insights - Noticias para usar.

No comments:

Post a Comment